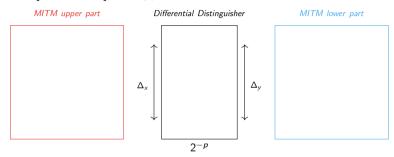
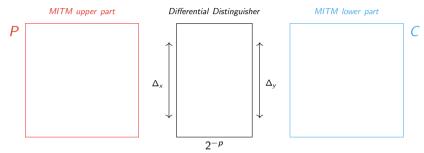

MILP tool for complete Differential MITM attacks

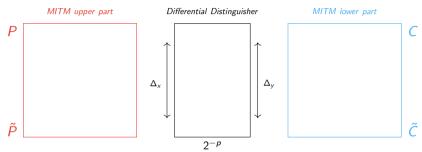
(nría_

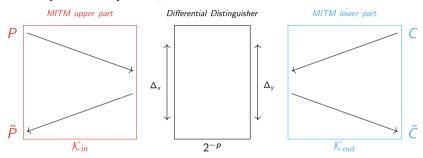
Bastien Michel
COSMIQ team
Inria, Paris

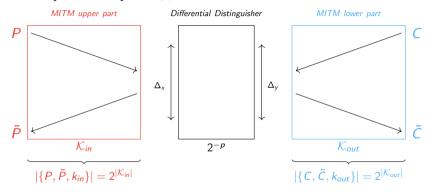

Overview

1. Differential MITM

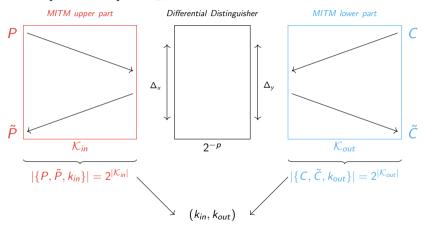

2. Tool

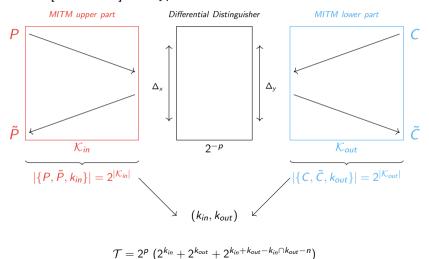

• Presented in [NPBD⁺23] at Crypto 2023

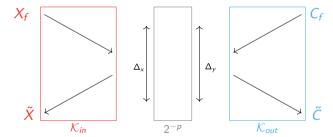

• Presented in [NPBD+23] at Crypto 2023

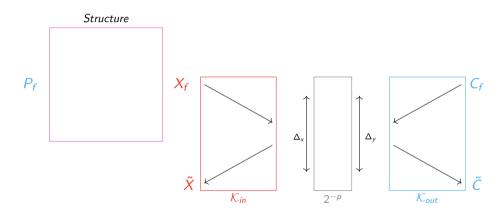


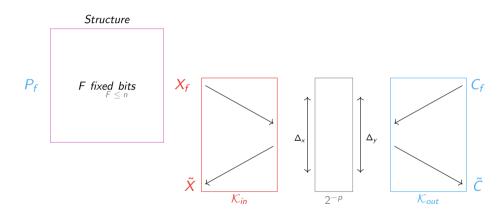
• Presented in [NPBD+23] at Crypto 2023

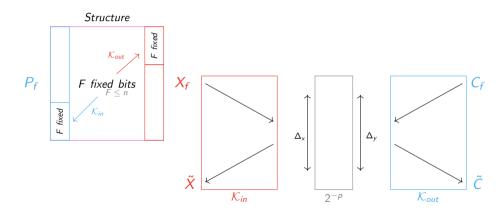


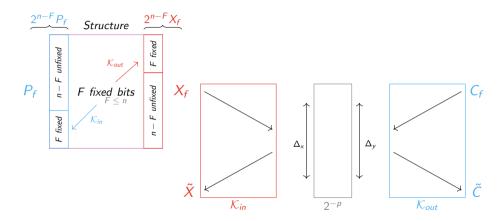


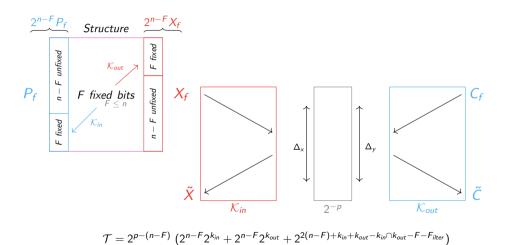


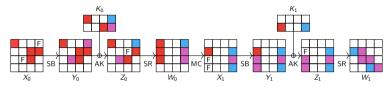

• Presented in [NPBD+23] at Crypto 2023

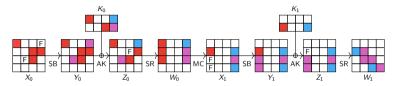



• Presented in [NPBD+23] at Crypto 2023

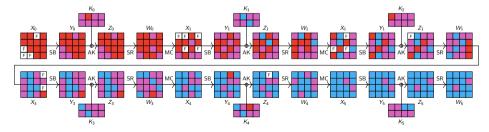







Structure (example on Skinny)

In $[AKM^+24]$ and $[NPBD^+23]$, structures on 2 rounds where added by hand :



Structure (example on Skinny)

In [AKM⁺24] and [NPBD⁺23], structures on 2 rounds where added by hand :

In [DHS $^+$ 21], an automated tool is used to found structures on 6 rounds for MITM attacks (improved in [BGST22] with superpostion) :

Problem

Searching for the optimal attack can be very complex by hand because of the technicality of the attack.

Problem

Searching for the optimal attack can be very complex by hand because of the technicality of the attack.

Solution

Develop a tool that **search** for the distinguisher, the MITM key recovery path and the structure at the same time to find the **optimal attack**.

Problem

Searching for the optimal attack can be very complex by hand because of the technicality of the attack.

Solution

Develop a tool that **search** for the distinguisher, the MITM key recovery path and the structure at the same time to find the **optimal attack**.

State of the art

- In [AKM⁺24] a MILP model was proposed to find the optimal distinguisher and MITM propagation, the structure was then added by hand.
- 2. In [DHS⁺21], an automated tool is used to found structures on more than two rounds.

Problem

Searching for the optimal attack can be very complex by hand because of the technicality of the attack.

Solution

Develop a tool that **search** for the distinguisher, the MITM key recovery path and the structure at the same time to find the **optimal attack**.

State of the art

- In [AKM⁺24] a MILP model was proposed to find the optimal distinguisher and MITM propagation, the structure was then added by hand.
- 2. In [DHS⁺21], an **automated tool** is used to **found structures** on more than two rounds.

Objective

Develop an improved tool that search for the optimal attack including complex structure.

Brief look at the tool

Current Model

The current model is **dedicated** (Skinny and Craft) and take as **arguments** the **size of each part** (structure, MITM and distinguisher).

Brief look at the tool

Current Model

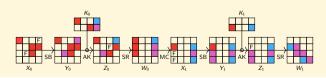
The current model is **dedicated** (Skinny and Craft) and take as **arguments** the **size of each part** (structure, MITM and distinguisher).

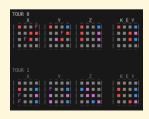
Search Time

For attacks on 23 rounds Skinny, around 13 000 to 16 000 integer variables are used and search time can go from 30 minutes to 7-8 hours.

Brief look at the tool

Current Model


The current model is **dedicated** (Skinny and Craft) and take as **arguments** the **size of each part** (structure, MITM and distinguisher).


Search Time

For attacks on 23 rounds Skinny, around 13 000 to 16 000 integer variables are used and search time can go from 30 minutes to 7-8 hours.

Human Friendly Results

We expect the tool to have a **nice interface**, so the results it finds can be used simply by any cryptanalyst. For now we **display** the **full path** of the attacks and all the parameters of the attacks directly in the terminal.

Current results and future work

First Results

Recover the full truncated differential MITM attacks on Skinny and Craft proposed in [AKM+24]

Current results and future work

First Results

Recover the full truncated differential MITM attacks on Skinny and Craft proposed in [AKM+24]

Current limitation

- 1. Convergence time is too long with too many variables restricting our study to blocks of 16 cells.
- 2. Optimal attack **search** needs to be performed for **every round parameters** (structure, distinguisher and MITM size) since the model cannot change them automatically (overcome with parallelization) .
- 3. Convergence time is too long for classic differential distinguisher on more than 10 rounds.

Current results and future work

First Results

Recover the full truncated differential MITM attacks on Skinny and Craft proposed in [AKM+24]

Current limitation

- 1. Convergence time is too long with too many variables restricting our study to blocks of 16 cells.
- 2. Optimal attack **search** needs to be performed for **every round parameters** (structure, distinguisher and MITM size) since the model cannot change them automatically (overcome with parallelization) .
- 3. Convergence time is too long for classic differential distinguisher on more than 10 rounds.

Next Objective

- 1. Generalize the tool for SPN AES like ciphers.
- 2. Decrease the time search by decreasing the number of variables and inequalities.
- 3. Improve the distinguisher search with mix truncated and classic differential trails.
- 4. **Improve** the structure part to include more **complex structures**.

References

- Zahra Ahmadian, Akram Khalesi, Dounia M'foukh, Hossein Moghimi, and María Naya-Plasencia, *Improved differential meet-in-the-middle cryptanalysis*, Springer-Verlag, 2024.
- Thenzhen Bao, Jian Guo, Danping Shi, and Yi Tu, Superposition meet-in-the-middle attacks: Updates on fundamental security of aes-like ciphers, Springer-Verlag, 2022.
- Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and Lei Hu, *Meet-in-the-middle attacks revisited: Key-recovery, collision, and preimage attacks*, Springer-Verlag, 2021.
- María Naya-Plasencia, Christina Boura, Nicolas David, Patrick Derbez, and Gregor Leander, *Differential meet-in-the-middle cryptanalysis*, Springer-Verlag, 2023.